Abaqus Volume II: I–Z Bedienungsanleitung

Stöbern Sie online oder laden Sie Bedienungsanleitung nach Software Abaqus Volume II: I–Z herunter. ABAQUS Volume II: I–Z User Manual [de] Benutzerhandbuch

  • Herunterladen
  • Zu meinen Handbüchern hinzufügen
  • Drucken
  • Seite
    / 628
  • Inhaltsverzeichnis
  • LESEZEICHEN
  • Bewertet. / 5. Basierend auf Kundenbewertungen
Seitenansicht 0
Keywords Reference ManualKeywords Reference Manual
Volume II: I–Z
Version 6.6
Seitenansicht 0
1 2 3 4 5 6 ... 627 628

Inhaltsverzeichnis

Seite 1 - Version 6.6

Keywords Reference ManualKeywords Reference ManualVolume II: I–ZVersion 6.6

Seite 2

CONTENTSD*D ADDED MASS 4.1*DAMAGE EVOLUTION 4.2*DAMAGE INITIATIO N 4.3*DAMAGE STABILIZATION 4.4*DAMPING 4.5*DASHPOT 4.6*DEBOND 4.7*DECHARGE 4.8*DECURR

Seite 3 - Volume II

*JOINT EL ASTICITY5. Temperature.6. First field variable.7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCI

Seite 4

*JOINT EL ASTICITY7. Temperature.8. First field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than one):1. S

Seite 5 - 5:32:43 2006

*JOINT EL ASTICITY7. First field variable.8. Second field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than

Seite 6

*JOINT PL ASTICITY10.3*JOINT PLASTICITY: Specify plas tic properties for elastic-plastic joint eleme nts.This option is used to define the plastic beha

Seite 7 - Contents — Volume I

*JOINT PL ASTICITY7. First field variable.8. Second field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than

Seite 8

*JOINT PL ASTICITYSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1. Fourth field variable.2. Etc., up to e

Seite 10 - CONTENTS

*JOINTED MATERIAL10.4*JOINTED MATERIAL: Specify the jointed material model.This option is used to define a failure surface and the flow parameters for a

Seite 11

*JOINTED MATERIALData lines defining failure surface and flow parameters (SHEAR RETENTION omitted):First line:1. Angle of friction, , for this system .

Seite 12

*JOULE HEAT FRACTION10.5*JOULE HEAT FRACTION: Define the fraction of electric energy released as heat.This option is used to specify the fraction of di

Seite 13

CONTENTSE*EL FILE 5.1*EL PRINT 5.2*ELASTIC 5.3*ELCOPY 5.4*ELECTRICAL CONDUC TIVITY 5.5*ELEMENT 5.6*ELEMENT MATRIX OUTPUT 5.7*ELEMENT O UTPUT 5.8*ELEME

Seite 15

K11. KABAQUS Version 6.1 Module:ID:Printed on:

Seite 17

*KAPPA11.1*KAPPA: Specify the material parametersand for mass diffusion driven bygradients of temperature and equivalent pressure stress, respectively

Seite 18

*KAPPASubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than five):1. Sixth field variable.2. Etc., up to eight field varia

Seite 19

*KINEMATIC11.2*KINEMATIC: Define a kinematic coupling constraint.This option is used to define a kinematic coupling constraint. It must be used in conju

Seite 21

*KINEMATIC COUPLING11.3*KINEMATIC COUPLING: Constrain all or specific degrees of freedom of a set ofnodes to the rigid body motion of a reference node.

Seite 22

*KINEMATIC COUPLING3. Last degree of freedom constrained. If this field is left blank, the degree of freedom specifiedin the second field will be the onl

Seite 23

L12. LABAQUS Version 6.1 Module:ID:Printed on:

Seite 24

CONTENTS*FILE O UTPUT 6.8*FILM 6.9*FILM PROPERTY 6.10*FILTER 6.11*FIXED MASS SCALING 6.12*FLOW 6.13*FLUID BEHAVIOR 6.14*FLUID BULK MODU LUS 6.15*FLUID

Seite 26

*LATENT HEAT12.1*LATENT H EAT: Specify latent heats.This option is used to specify a material’s latent heat.Products: ABAQUS/Standard ABAQUS/ExplicitT

Seite 28

*LOAD CASE12.2*LOAD CASE: Begin a load case definition for multiple load case analysis.This option is used to begin each load case definition.Product: A

Seite 30

M13. MABAQUS Version 6.1 Module:ID:Printed on:

Seite 32

*MAP SOLUTION13.1*MAP SOLUTION: Map a solution from an old mesh to a new mesh.This option is used to transfer solution variables from an earlier analy

Seite 33

*MAP SOLUTION2. Value of the translation to be applied in the Y-direction.3. Value of the translation to be applied in the Z-direction.Enter values of

Seite 34

*MASS13.2*MASS: Specify a point mass.This option is used to define lumped m ass values associated with MASS elem ents.For ABAQUS/Standard analyses this

Seite 35

CONTENTSH*HEADING 8.1*HEAT GENERATION 8.2*HEAT TRANSFER 8.3*HEATCAP 8.4*HOURGLASS STIFFNESS 8.5*HYPERELASTIC 8.6*HYPERFOAM 8.7*HYPOELASTIC 8.8*HYSTERE

Seite 36

*MASSData line to define the mass magnitude:First (and only) line:1. Mass magnitude. Mass, not weight, should be given.ABAQUS does not use any specific

Seite 37

*MASS DIFFUSION13.3*MASS DIFFUSION: Transient or steady-state uncoupled mass diffusion analysis.This option is used to control uncoupled transient or

Seite 38

*MASS DIFFUSIONIf a value is given, ABAQU S/Standard will use the minimum of the given value and 0.8 timesthe suggested initial time step.4. Maximum t

Seite 39

*MASS FLOW RATE13.4*MASS FLOW RATE: Specify fluid mass flow rate in a heat transfer analysis.This option is used to specify the mass flow rate per unit a

Seite 40

*MASS FLOW RATEData lines to define mass flow rates:First line:1. Node number or node set label.2. Mass flow rate per unit area in the x-direction (units

Seite 41

*MATERIAL13.5*MATERIAL: Begin the definition of a material.This option is used to indicate the start of a mater ial definition.Products: ABAQUS/Standard

Seite 42

*MATERIALSet STRAIN RATE REGULARIZATION=LINEAR to use a linear regularization for strainrate-dependent material data.There are no data lines associate

Seite 43

*MATRIX13.6*MATRIX: Read in the stiffness or mass matrix for a linear user element.This option can be used only in conjunction with the*USER ELEMENT,

Seite 45

*MATRIX ASSEMBLE13.7*MATRIX ASSEMBLE: Define stiffness or mass matrices for a par t of the model.This option can be used to identify a stiffness or a m

Seite 46 - INCIDENT WAVE INTERACTION

CONTENTSContents — Volume III*IMPEDANCE 9.1*IMPEDANCE PROPERTY 9.2*IMPERFECTION 9.3*IMPORT 9.4*IMPORT CONTROLS 9.5*IMPORT ELSET 9.6*IMPORT NSET 9.7*IN

Seite 48

*MATRIX INPUT13.8*MATRIX INPUT: Read in a matrix for a part of the model.This option can be used to input a matrix in sparse format.Product: ABAQUS/St

Seite 49

*MATRIX INPUT4. Degree of freedom number for column node.5. Matrix entry.Give data to define a symmetric matrix in lower triangular, upper triangular,

Seite 50 - INCIDENT WAVE PROPERTY

*MEMBRANE SECTION13.9*MEMBRANE SECTION: Specify section properties for membrane elements.This option is used to assign section properties to a set of

Seite 51

*MEMBRANE SECTIONNODAL THICKNESSInclude this parameter to indicate that the membrane thickness should not be read from the data linesbut should be int

Seite 52

*MODAL DAMPING13.10*MODAL DAMPING: Specify damping for modal dynamic analysis.This option is used to specify damping for mode-ba sed procedures. It is

Seite 53

*MODAL DAMPINGanalysis,” Section 6.3.11 of the ABAQUS Analysis User’s Manual). The value of the dampingconstant, s, that m ultiplies the internal forc

Seite 54

*MODAL DAMPINGData lines to define structural damping by specifying mode numbers (STRUCTURAL andDEFINITION=MODE NUMBERS):First line:1. Mode number of t

Seite 56

*MODAL DYNAMIC13.11*MODAL DYNAMIC: Dynamic time history analysis using modal superposition.This option is used to provide dy namic time history respon

Seite 57

CONTENTSL*LATENT HEAT 12.1*LOAD CASE 12.2M*MAP SOLUTION 13.1*MASS 13.2*MASS DIFFUSION 13.3*MASS FLOW RATE 13.4*MATERIAL 13.5*MATRIX 13.6*MATRIX ASSEMB

Seite 59

*MODAL FILE13.12*MODAL FILE: Write generalized coordinate (modal amplitude) data or eigendata tothe results file during a mode-based dynamic or eigenva

Seite 61

*MODAL OUTPUT13.13*MODAL OUTPUT: Write generalized coordinate (modal amplitude) data to the outputdatabase during a mode-based dynamic or complex eige

Seite 63

*MODAL PRINT13.14*MODAL PRINT: Print generalized coordinate (modal amplitude) data during a mode-based dynamic procedure.This option is used during mo

Seite 65

*MODEL CHANGE13.15*MODEL CHANGE: Remove or reactivate elements and contact pairs.This option is used to rem ove or reactivate elem ents or contact pai

Seite 66

*MODEL CHANGEData lines to remove/reactivate elements (TYPE=ELEMENT):First line:1. Give a list of element numbers and/or element set names that are in

Seite 67

*MOHR COULOMB13.16*MOHR COULOMB: Spe cify the Mohr-Coulomb plasticity model.This option is used to define the yield surface and flow potential parameter

Seite 68

CONTENTS*NODE FILE 14.9*NODE OUTPUT 14.10*NODE PRINT 14.11*NODE RESPONSE 14.12*NONSTRUCTURAL MASS 14.13*NORMAL 14.14*NSET 14.15O*ORIENTATION 15.1*ORNL

Seite 69

*MOHR COU LOMB2. Dilation angle, , at high confining pr essure in the p– plane. Give the value in degrees.3. Temperature.4. First field variable.5. Seco

Seite 70

*MOHR COU LOMB HARDENING13.17*MOHR COULOMB HARDENING: Specify hardening for the Mohr-Coulomb plasticitymodel.This option is used to define piecewise li

Seite 71

*MOHR COULO MB HARDENING2. Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the dependence of th

Seite 72

*MOISTURE SWELLING13.18*MOISTURE SWELLIN G: De fine moisture-driven swe lling.This option is used to define the moistu re-driven swelling of the solid s

Seite 74

*MOLECULAR WEIGHT13.19*MOLECULAR WEIGHT: Define the molecular weight of an ideal gas species.This option is used to define the molecular weight of an id

Seite 76

*MONITOR13.20*MONITOR: Define a degree of freedom to monitor.This option is used to choose a node and degree of freedom to monitor the progress of the

Seite 78

*MOTION13.21*MOTION: Specify motions as a predefined field.This option is used to specify motions of node sets or individual nodes during cavity radia t

Seite 79

CONTENTS*PRINT 16.28*PSD-DEFINITION 16.29R*RADIATE 17.1*RADIATION FILE 17.2*RADIATION OUTPUT 17.3*RADIATION PRINT 17.4*RADIATION SYM METRY 17.5*RADIAT

Seite 80

*MOTIONis given with TYPE=VELOCIT Y, the default is a STEP function f or cavity radiation analysis anda RAMP function for steady-state transport analy

Seite 81

*MOTIONThe following data are required only for three-dimensional cases:5. Global z-component of point a on the axis of rotation.6. Global x-component

Seite 83

*MPC13.22*MPC: Define multi-point constraints.This option is used to impose constraints between different degrees of freedom of the model.Products: ABA

Seite 84

*MPCthe following nodes on this line. Any number of continuation lines are allowed. Exactly 15 nodes or nodesets must be given on each line except the

Seite 85

*MULLINS EFFECT13.23*MULLINS EFFECT: Specify Mullins ef fect material parameters for elastomers.This option is used to define material constants for th

Seite 86 - INTEGRATED OUTPUT SECTION

*MULLINS EFFECTcannot be specified if both the R and M parameters are also specified (use the data line instead tospecify all three parameters). If this

Seite 87

*MULLINS EFFECTData lines to define the material constants if both the TEST DATA INPUT and USER parametersare omitted:First line:1. .2..3.(If this entr

Seite 89

*M113.24*M1: Define the first bending moment behavior of beams.This option is used to de fine the first bending moment behavior of beams. It can be used o

Seite 90

CONTENTS*SIMPEDANCE 18.17*SIMPLE SHEAR TEST D ATA 18.18*SLIDE LINE 18.19*SLOAD 18.20*SOILS 18.21*SOLID SECTION 18.22*SOLUBILITY 18.23*SOLUTION TECH NI

Seite 91

*M1Subsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field varia

Seite 92

*M213.25*M2: Define the second bending moment behavior of beams.This option is used to define the second bending moment behavior of beams. It can be use

Seite 93

*M2Subsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field varia

Seite 94

N14. NABAQUS Version 6.1 Module:ID:Printed on:

Seite 96

*NCOPY14.1*NCOPY: C reate nodes by copying.This option is used to copy a node set to create a new node set.Products: ABAQUS/Standard ABAQUS/ExplicitTy

Seite 97

*NCOPYOptional parameters:MULTIPLEThis parameter is used with the SHIFT parameter to define the number of ti mes the rotation shouldbe applied. The def

Seite 98

*NCOPY2. Y-coordinate of the first poi nt definin g the reflection plane.3. Z-coordinate of the first point defining the reflection plane.4. X-coordinate of

Seite 99

*NCOPYbaFigure 14.1–1*NCOPY, SHIFT option.a, b define the lineNew SetabOld setFigure 14.1–2*NCOPY, REFLECT=LINE option.14.1–4ABAQUS Version 6.1 Modul

Seite 100

*NCOPYa, b, c define the mirror planeNew SetOld SetacbFigure 14.1–3*NCOPY, REFLECT=MIRROR option.New Set Old seta is the point through which the no

Seite 101

CONTENTST*TEMPERATU RE 19.1*TENSILE FAILURE 19.2*TENSION STIFFENING 19.3*THERMAL EXPANSION 19.4*TIE 19.5*TIME POINTS 19.6*TORQUE 19.7*TORQUE PRINT 19.

Seite 102

*NCOPYLLpolenodea old set new setFigure 14.1–5*NCOPY, POLE option.14.1–6ABAQUS Version 6.1 Module:ID:Printed on:

Seite 103

*NFILL14.2*NFILL: Fill in nodes in a region.This option is used to generate nodes for a region of a m esh by filling in nodes between two bounds.Produc

Seite 104

*NFILLData lines to fill in nodes between two bounds:First line:1. Name of the node set defining the first bound of the re gion.2. Name of the node set d

Seite 105 - Printed on:

*NGEN14.3*NGEN: Generate incremental nodes.This option is used to generate nodes incrementally.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model da

Seite 106

*NGEN6. Second coordinate of the extra point (if required).7. Third coordinate of the extra point (if required).The following entries are used only fo

Seite 107

*NMAP14.4*NMAP: Map nodes from one coordinate system to another.This option is used to map a set of nodes from one coordinate system to another.Produc

Seite 108

*NMAPby the distance between points a and b. The line between points a and b defines the position.For every value ofthe -coordinate is defined in a plan

Seite 109

*NMAP3. Y-coordinate of the point to which this control node is to be mapped.4. Z-coordinate of the point to which this control node is to be mapp ed.

Seite 110

*NMAP(R, θ, φ)φXYabc^Z^^zyxzyxb(θ = 0)(φ = 0)θθR(R, θ, Z)(θ = 0)rectangular skewed Cartesian spher

Seite 111

*NO COMPRESSION14.5*NO C OMPRESSION: Introduce a compressive failure theor y (tension onlymaterials).This option is used to m odify the elasticity defi

Seite 115

*NO TENSION14.6*NO TENSION: Introduce a tension failure theory (compression only material).This option is used to m odify the elasticity definition so

Seite 117

*NODAL THICKNESS14.7*NODAL THICKNESS: Define shell or membrane thickness at nodes.This option is used to define variabl e shell or membrane thicknesses

Seite 118

*NODAL THICKNESSData lines when the GENERATE parameter is omitted:First line:1. Node set label or node number.2. Thickness.Repeat this data line as of

Seite 119

*NODE14.8*NODE: Specify nodal coordinates.This option is used to define a node directly by specify ing its coordinates. Nodal coordinates given in this

Seite 120

*NODE4. Third coordinate of the node.5. First direction cosine of the normal at the no de (optional).6. Second direction cosine of the normal at the n

Seite 121

*NODE FILE14.9*NODE FILE: Define results file requests for nodal data.This option is used to choose the nodal variables that will be written to the resu

Seite 122

*NODE FILEThe default value is LAST MODE=N,whereN is the num ber of modes extracted. If theMODE param eter is used, the default value is LA ST M ODE=

Seite 123

*NODE OUTPUT14.10*NODE OUTPUT: Define output database requests for nodal data.This option is used to write nodal variables to the output database. It m

Seite 124

I9. IABAQUS Version 6.1 Module:ID:Printed on:

Seite 125

*NODE OUTPUTOptional parameter:VA R I A B L ESet VARIABLE=ALL to indicate that all nodal variables applicable to this procedure and materialtype shoul

Seite 126

*NODE PRINT14.11*NODE PRINT: Define print requests for nodal variables.This option is used to provide tabular printed output of nodal variables (displa

Seite 127

*NODE PRINToutput is required. The default is MODE=1. S ee also the LAST MODE parameter. Whenperforming a*FREQUENCY analysis, the normalization will f

Seite 128 - Second line:

*NODE RESPONSE14.12*NODE RESPONSE: Define nodal responses for design sensitivity analysis.This option is used to write nodal response sensitivities to

Seite 130

*NONSTRUCTURAL MASS14.13*NONSTRUCTURAL MASS: Specify mass contribution to the model fromnonstructural features.This option is used to include the mass

Seite 131

*NONSTRUCTURAL MASSSet DISTRIBUTION=VOLUME PROPORTIONAL to distribute the total nonstructural massamong the members of the element set region in propo

Seite 132 - MASS DIFFUSION

*NORMAL14.14*NORMAL: Specify a par ticular normal direction.This option is used to define alternative nodal normals for elements. In an ABAQ US/Standar

Seite 134

*NSET14.15*NSET: Assign nodes to a node set.This option assigns nodes to a node set.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model or history da

Seite 136

*NSETINTERNALABAQUS/CAE uses the INTERNAL param eter to identify sets that are created internally. TheINTERNAL param eter is used only in models define

Seite 137

O15. OABAQUS Version 6.1 Module:ID:Printed on:

Seite 139

*ORIENTATION15.1*ORIENTATION: Define a local axis system for material or element propertydefinition, for kinematic coupling constraints, for free direct

Seite 140

*ORIENTAT IONSYSTEMSet SYSTEM=RECTANGULAR (default) to define a rectangular Cartesian system by the threepoints a, b,andc shown in Figure 15.1–1. Point

Seite 141

*ORIENTATIONData lines to define an orientation using DEFINITION=NODES:First line:1. Node number of the node at point a.2. Node number of the node at p

Seite 142 - MATRIX INPUT

*ORIENTAT IONYZSYSTEM = CYLINDRICALSYSTEM = SPHERICALZ (meridional)baY (circumferential) X (radial) X (radial)Y (tangential)ZbaX (global)YZX

Seite 143

*ORNL15.2*ORNL: Specify constitutive model developed by Oak Ridge National Laboratory.This option is used to provide plasticity and creep calculations

Seite 145

*OUTPUT15.3*OUTPUT: Define output requests to the output database.This option is used to write contact, element, energy, nodal, or diagnostic output to

Seite 146

*IMPEDANCE9.1*IMPEDANCE: Define impedances for acoustic analysis.This option is used to provide boundary impedances or nonreflecting boundaries for acou

Seite 147

*OUTPUTHISTORYInclude this parameter to ind icate that the output requests used in conjunction with the*OUTPUToption will be written to the outp ut da

Seite 148

*OUTPUTtypes except*DYNAMIC and*MODAL DYNAMIC; output will be written every 10 incrementsfor these procedure types.The FREQUENCY, NUMBER INTERVAL, TIM

Seite 149

*OUTPUTUsing*OUTPUT in an ABAQUS/Explicit analysisReferences:•“Output to the output database,” Section 4.1.3 of the ABAQUS Analysis User’s Manual•“ABA

Seite 150

*OUTPUTTIME POINTSSet this parameter equal to the name of the*TIME POINTS option that defines the tim e pointsat which output is to be written. If this

Seite 151

*OUTPUTVA R I A B L ESet VARIABLE=ALL to indicate that all variables applicable to this procedure and material typeshould be written to the output dat

Seite 152

P, Q16. P, QABAQUS Version 6.1 Module:ID:Printed on:

Seite 154

*PARAMETER16.1*PARAMETER: Define parameters for input parametrization.This option is used to define param eters that can be used in place of ABA QUS inp

Seite 156

*PARAMETER DEPENDENCE16.2*PARAMETER DEPENDENCE: Define dependence table for tabularly dependentparameters.This option is used to define the dependence t

Seite 157

*IMPEDANCEOptional parameter:OPSet OP=MOD (default) to modify existing impe dances or to define addi tional impedances.Set OP=NEW if all existing im pe

Seite 159

*PARAMETER SHAPE VARIATION16.3*PARAMETER SHAPE VARIATION: Define parametric shape variations.This option is used to define parametric shape variations.P

Seite 160

*PARAMETER SHAPE VARIATIONOptional parameters if the FILE parameter is used:INCSet this parameter equal to the increm ent number (in the analysis whos

Seite 161

*PARAMETER SHAPE VARIATION(X,Y,Z)Rectangular Cartesian(SYSTEM=R)(default)RθCylindrical(SYSTEM=C)(θ and φ are given in degrees)(R,θ,φ)θφSpherical(SYSTE

Seite 163

*PART16.4*PART: Begin a par t definition.This option is used to begin a part definiti on. It must be used in conjunction with the*ASSEMBLY,*ENDPART, and

Seite 165

*PERIODIC16.5*PERIODIC: Define periodic symmetry for a cavity radiation heat transfer analysis.This option is used to define cavity symmetry by periodic

Seite 166

*PERIODICis assumed to apply both in the positive and neg ative directions of the distance vector. The defaultvalue is NR=2.Data line to define periodi

Seite 167

*PERIODICn = 2x-2d-dd2dyabFigure 16.5–1*PERIODIC, TYPE=2D option.16.5–3ABAQUS Version 6.1 Module:ID:Printed on:

Seite 168

*IMPEDANCE8. X-component of the direction cosine of the majo r axis of the ellipse or prolate spheroid definingthe radiating surface. The components of

Seite 169

*PERIODICzxy2dd-d-2dn = 2cabFigure 16.5–2*PERIODIC, TYPE=3D option.16.5–4ABAQUS Version 6.1 Module:ID:Printed on:

Seite 170

*PERIODIC-2d-dd2dn = 2rzz = const periodic symm reference lineFigure 16.5–3*PERIODIC, TYPE=ZDIR option.16.5–5ABAQUS Version 6.1 Module:ID:Printed on:

Seite 172

*PERMEABILITY16.6*PERMEABILITY: D efine permeability for pore fluid flow.This option is used to define permeability for pore fluid flow in problems involvin

Seite 173

*PERMEABILITYData lines to define fully saturated isotropic permeability (TYPE=ISOTROPIC):First line:1. k.(UnitsofLT−1.)2. Void ratio, e.3. Temperature

Seite 174

*PERMEABILITY6. .7. Void ratio, e.8. Temperature,.Subsequent lines (only needed if the DEPENDENCIES parameter is specified):1. First field variable.2. S

Seite 176 - MULLINS EFFECT

*PHYSICAL C ONSTANTS16.7*PHYSICAL CONSTANTS: Specify physical constants.This option is used to define physical constants necessary for an analysis; sin

Seite 178

*PIEZOELECTRIC16.8*PIEZOELECTRIC: Specify piezoelectric material properties.This option is used to define the piezoelectric properties of a material.Pr

Seite 180

*PIEZOELECTRIC2. .3..4..5..6..7..8..Third line:1. .2..3. Temperature,.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subs

Seite 181

*PIEZOELECTRIC3. .4..5..6..7..8..Third line:1. .2..3. Temperature,.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequ

Seite 183

*PIPE-SOIL INTERACTION16.9*PIPE-SOIL INTERACTION: Specify element properties for pipe-soil interactionelements.This option is used to define properties

Seite 185

*PIPE-SOIL STIFFNESS16.10*PIPE-SOIL STIFFNESS: Define constitutive behavior for pipe-soil interactionelements.This option is used to d efine the constit

Seite 186

*PIPE-SOIL STIFFNESSTYPESet TYPE=LINEAR (default) to define a lin ear constitutive model.Set TYPE=NONLINEAR to define a nonlinear constitutive m odel.Se

Seite 187

*PIPE-SOIL STIFFNESS3. Temperature.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequent lines (only needed if the DE

Seite 188

*PIPE-SOIL STIFFNESS7. Second field variable.8. Third field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater th

Seite 189 - New Set

*PIPE-SOIL STIFFNESSSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1. Fourth field variable.2. Etc., up to

Seite 190

*IMPEDANCE PROPERTY9.2*IMPEDANCE PROPERTY: Define the impedance parameters for an acoustic mediumboundary.This option is used to define the proportional

Seite 191

*PIPE-SOIL STIFFNESSData lines if the c onstitutive behavior is defined in user s ubroutine UMAT ( TYPE=USER):First line:1. Enter the data to be used a

Seite 192

*PLANAR TEST DATA16.11*PLANAR TEST DATA: Used to provide planar test (or pure shear) data (compressionand/or tension).This option is used to provide p

Seite 193

*PLANAR TEST DATAData lines to specify planar test data for hyperelasticity other than the Marlow model:First line:1. Nominal stress, .2. Nominal stra

Seite 194 - Spherical

*PLANAR TEST DATA3. Nominal transverse strain, . Default is zero. Not needed if the POISSON parameter isspecifiedonthe*HYPERFOAM option.Repeat this dat

Seite 196

*PLASTIC16.12*PLASTIC: Specify a metal plasticity model.This option is used to spe cify the plastic part of the material model for elastic-plastic mat

Seite 197

*PLASTICOptional parameter for use with H ARDENING=ISOTROPIC:RATESet this param eter equal to the equivalent plastic strain rate,, for which this stre

Seite 198

*PLASTICData lines for HARDENING=COMBINED w ith DATA TYPE=STAB ILIZED:First line:1. Yield stress.2. Plastic strain.3. Strain range.4. Temperature.5. F

Seite 199

*PLASTIC2. Plastic strain.3. Temperature, if temperature dependent.Repeat this data line a maximum of two times to define linear kinematic hardening in

Seite 200

*PLASTIC AXIAL16.13*PLASTIC AXIAL: Define plastic axial force for frame elements.This option can be used only in conjunction with the*FRAME SECTION opt

Seite 201

*IMPEDANCE PROPERTYData lines to define an impedance using DATA=ADMITTANCE (default):First line:1. , the proportionality factor between pressure and di

Seite 203

*PLASTIC M116.14*PLASTIC M1: Define the first plastic bending moment behavior for frame elements.This option can be used only in conjunction with the*FR

Seite 205

*PLASTIC M216.15*PLASTIC M2: Define the second plastic bending moment behavior for frameelements.This option can be used only in conjunction with the*F

Seite 207

*PLASTIC TORQUE16.16*PLASTIC TORQUE: Define the plastic torsional moment behavior for frameelements.This option can be used only in conjunction with th

Seite 209

*POROUS BULK MODULI16.17*POROUS BULK MODULI: Define bulk moduli for soils and rocks.This option is used to define the bulk moduli of solid grains a nd a

Seite 211

*POROUS ELASTIC16.18*POROUS ELASTIC: Specify elastic material properties for porous materials.This option is used to define the elastic parameters for

Seite 212

*IMPERFECTION9.3*IMPERFECTION: Introduce geometric imperfections for postbuckling analysis.This option is used to introduce a geometric imperfection i

Seite 213

*POROUS ELASTIC2. Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the dependence of the materia

Seite 214

*POROUS FAILURE CRITERIA16.19*POROUS FAILURE CRITERIA: Define porous material failure crit eria for a*POROUSMETAL PLASTICITY mo del.This option is used

Seite 216

*POROUS METAL PLASTICITY16.20*POROUS METAL PLASTICITY: Specify a porous metal plasticity model.This option is used to s pecify the porous part of the

Seite 217

*POROUS METAL PLASTICITY6. Second field variable.7. Etc., up to four field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a v

Seite 218

*POST OUTPUT16.21*POST OUTPUT: Postprocess for output from the restar t file.This option can be used only for postprocessing to recover additional prin

Seite 220

*POTENTIAL16.22*POTENTIAL: Define an anisotropic yield/creep model.This option is used to define stress ratios for anisotropic yield and creep behavior.

Seite 221

*POTENTIAL7. Temperature.8. First field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than one):1. Second fie

Seite 222

*PREPRINT16.23*PREPRINT: Select printout for the analysis input file processor.This option is used to select the printout that will be obtained from th

Seite 223

ABAQUS KeywordsReference ManualVolume IIVersion 6.6ABAQUS Version 6.1 Module:ID:Printed on:

Seite 224

*IMPERFECTIONNSETSet this parameter equal to the node set to which the geometric imperfection values are to be applied.If this parameter is omitt ed,

Seite 226

*PRESSURE PENETRATION16.24*PRESSURE PENETRATION: Specify pressure penetration loads with surface-basedcontact.This option is used to prescribe pressur

Seite 227

*PRESSURE PENETRATIONOPSet OP=MOD (default) for existing pre ssure penetration loads to remain, with this option modifyingexisting pressure penetratio

Seite 228

*PRESSURE STRESS16.25*PRESSURE STRESS: Specify equivalent pressure stress as a predefined field for amass diffusion analysis.This option can be used onl

Seite 229

*PRESSURE STRESSare being reset to new values (not to initial conditions) via OP=NEW, the AMPLITUDE parameterdescribed above applies.Required paramete

Seite 230 - Optional parameters:

*PRESSURE STRESSData lines to define pressures using the data line format:First line:1. Node set or node number. If a node set label is given, all node

Seite 232

*PRESTRESS HOLD16.26*PRESTRESS HOLD: Keep rebar prestress constant du ring initial equilibriumsolution.This option is used within a*STATIC step (“Stat

Seite 234

*PRE-TENSION SECTION16.27*PRE-TENSION SECTION: Associate a pre-tension node with a pre-tension section.This option is used to associate a pre-tension

Seite 235 - 16. P, Q

*IMPERFECTION(X,Y,Z)Rectangular Cartesian(SYSTEM=R)(default)RθCylindrical(SYSTEM=C)(θ and φ are given in degrees)(R,θ,φ)θφSpherical(SYSTEM=S)ZYXYYZZXX

Seite 236

*PRE-TENSION SECTIONIf the data line is omitted, ABAQUS/Standard will com pute an average normal to the pre-tensionsection for continuum elements. For

Seite 237

*PRINT16.28*PRINT: Request or suppress output to the message file in an ABAQUS/Standardanalysis or to the status file in an ABAQUS/Explicit analysis.Thi

Seite 238

*PRINTRESIDUALSet RESIDUAL=YES (default) if the output of equilibrium residuals is to be given during theequilibrium iterations. Set RESIDUAL=NO to su

Seite 239

*PSD-DEFINITION16.29*PSD-DEFINITION: Define a cross-spectral density frequency function for randomresponse loading.This option is used to define a frequ

Seite 240

*PSD-DEFINITIONSet TYPE=FORCE (default) if this frequency function is given directly in power units.Set TYPE=DB if this frequency function is defined i

Seite 241

R17. RABAQUS Version 6.1 Module:ID:Printed on:

Seite 243

*RADIATE17.1*RADIATE: Specify radiation conditions in heat transfer analyses.This option is used to apply radiation boundary conditions between a nonc

Seite 244

*RADIATESet REGION TYPE=LAGRANGIAN (default) to apply the radiation conditi on to aLagrangian boundary region. The edge of a Lagrangian boundary regio

Seite 245

*RADIATION FILE17.2*RADIATION FILE: Define results file requests for cavity radiation heat transfer.This option is used to write cavity radiation variab

Seite 248

*RADIATION OUTPUT17.3*RADIATION OUTPUT: Define output database requests for cavity radiationvariables.This option is used to write cavity ra diation va

Seite 249 - PERIODIC

*RADIATION O UTPUTData lines to request cavity radiation output:First line:1. Specify the identifying keys for the variables to be written to the outp

Seite 250

*RADIATION PRINT17.4*RADIATION PRINT: Define print requests for cavity radiation heat transfer.This option is used to print tabula r output of cavity r

Seite 251

*RADIATION PRINTData lines to request printed output:First line:1. Give the identifying keys for the variables to be printed in a table for this reque

Seite 252

*RADIATION SYMMETRY17.5*RADIATION SYMMETRY: Define cavity symmetries for radiation heat transferanalysis.This option must precede the*CYCLIC,*PERIODIC,

Seite 254

*RADIATION VIEWFACTOR17.6*RADIATION VIEWFACTOR: Control cavity radiation and viewfactor calculations.This option is used to control the calculation of

Seite 255

*RADIATION VIEWFACTORSYMMETRYInclude this parameter to indicate the existence of radiation symmetries in the model. Thisparameter must be set equal to

Seite 256

*RANDOM RESPONSE17.7*RANDOM RESPONSE: Calculate response to random loading.This option is used to give the linearized response of a model to random ex

Seite 257

*IMPORT9.4*IMPORT: Impor t information from a previous ABAQUS/Explicit orABAQUS/Standard analysis.If this is an ABAQUS/Explicit analysi s, this option

Seite 259

*RATE DEPENDENT17.8*RATE DEPENDENT: Define a rate-dependent viscoplastic model.This option can be used in conjunction with the*PLASTIC option (HARDENIN

Seite 260

*RATE DEPENDENTData lines to define the overstress power law parameters (TYPE=POWER LAW):First line:1. D.2. n.3. Temperature.4. First field variable.5.

Seite 261

*RATIOS17.9*RATIOS: Define anisotropic swelling.This option is used to specify ratios that define anisotropic swelling. The*RATIOS option can be used on

Seite 262

*RATIOSSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than four):1. Fifth field variable.2. Etc., up to eight field var

Seite 263

*REBAR17.10*REBAR: Define rebar as an element property.This option is used as an alternative method to define rebar as an element property in shells, me

Seite 264

*REBAROptional parameters:GEOMETRYThis parameter is not meaningful for rebar in beams, axisymm etric shells, or axisymmetricmembranes, or for single r

Seite 265

*REBAR21Local beamsection axesXX12RebarFigure 17.10–1 Rebar location in a beam section.Data lines to define isoparametric rebar in three-dimensional sh

Seite 266

*REBAR3214Similar to edge 1 or 3Similar to edge 2 or 41 1-2 2 2-3 3 3-4 4 4-1 Edge Corner nodes422311physical spaceisoparametric spac

Seite 267

*REBARData lines to define rebar in axisymmetric shell elements:First line:1. Element number or name of the element set that contains these rebar.2. Cr

Seite 268

*IMPORTthe analysis is to be imported. If this param eter is omitted, the analysis is imported from the lastavailable interval of the specified step.IT

Seite 269

*REBAR4. Orientation of rebar in degrees. See Figure 17.10–3.5. Fractional distance from the edge given below, f (ratio of the distance between the ed

Seite 270

*REBAR5. Isoparametric direction (for three-dimensional elements only).In three-dimensional cases the fractional distances,and are given along the firs

Seite 271

*REBAREdge Corner nodes 1 1-2 2 2-3 3 3-4 4 4-1 rebar layer BLA2L22143Is

Seite 272

*REBAREdge Corner nodes 1 1-2 2 2-3 3 3-4 4 4-1 Isoparametric mapping of

Seite 273

*REBAREdge Corner nodes 1 1-2 2 2-3 L22143Isoparametric mapping of element with rebar4321yxsingle r

Seite 274

*REBARIsoparametric direction: 1 (parallel to the 1-2 edge of the element and intersecting face 1-4-8-5)Iso

Seite 276

*REBAR LAYER17.11*REBAR LAYER: Define layers of reinforcement in membrane, shell, surface, andcontinuum elements.This option is used to define one or mu

Seite 277

*REBAR LAYERORIENTATIONThis param eter is meaningful only for rebar in general shell, membrane, and surface elements. Setthis parameter equal to the n

Seite 278

*REBAR LAYER9. Radius, , of the rebar defined with GEOMETRY=LIFT EQUATION. The value is theposition of the rebar in the uncured geometry, measured with

Seite 279

*IMPORT CONTROLS9.5*IMPORT CONTROLS: Specify tolerances used in importing model and results data.This option is used to specify the tolerance for erro

Seite 281

*REFLECTION17.12*REFLECTION: Define reflection symmetries for a cavity radiation heat transferanalysis.This option is used to define a cavity symmetry by

Seite 282

*REFLECTIONData lines to define reflection of a three-dimensional cavity (TYPE=PLANE):First line:1. X-coordinate of point a (see Figure 17.12–2).2. Y-co

Seite 283

*REFLECTIONZXabnYcFigure 17.12–2*REFLECTION, TYPE=PLANE option.17.12–3ABAQUS Version 6.1 Module:ID:Printed on:

Seite 284

*REFLECTIONzrz = constsymmetry lineFigure 17.12–3*REFLECTION, TYPE=ZCONST option.17.12–4ABAQUS Version 6.1 Module:ID:Printed on:

Seite 285

*RELEASE17.13*RELEASE: Release rotational degrees of freedom at one or both ends of a beamelement.This option is used to release a r otational degree

Seite 287

*RESPONSE SPECTRUM17.14*RESPONSE SPECTRUM: Calculate the response based on user-supplied responsespectra.This option is used to calculate estimates of

Seite 288

*RESPONSE SPECTRUM4. Z-direction cosine of this direction.5. Factor multiplying the magnitudes i n the response spectr um. Default is 1.0.Second line

Seite 289

*RESTART17.15*RESTART: Save and reuse data and analysis results.WARNING: This option can create a ve ry large amount of data. The size is estimated by

Seite 291

*RESTARTIf this parameter is omitted, the restart will begin at the end of the step specified on the STEPparameter.ITERATIONIf the new analysis is rest

Seite 292

*RESTARTWhen the OVERLAY parameter is included, each increment w ritten overlays the previousincrement, if any, writ ten for the same step. If this pa

Seite 293

*RESTARTOptional parameters if the W RITE parameter is used:NUMBER INTERVALSet this parameter equal to the number of intervals during the step at whic

Seite 294

*RETAINED EIGENMODES17.16*RETAINED EIGENMODES: Select the modes to be retained in a substructuregeneration analysis.This option selects the modes to b

Seite 296

*RETAINED NODAL DOFS17.17*RETAINED NODAL DOFS: Specify the degrees of freedom that are to be retained asexternal to a substructure.This option is used

Seite 298

*RIGID BODY17.18*RIGID BODY: Define a set of elements as a rigid body and define rigid elementproperties.This option is used to bind a set of elements a

Seite 299

*RIGID BODYPIN NSETSet this parameter equal to the name of a node set containing pin-type nodes to be assigned to therigid body. This parameter can be

Seite 300

*RIGID BODYThere are no data lines associated with this option in an ABAQUS/Standard analysis.Data line for R2D2, RB2D2, and RB3D2 elements in an ABAQ

Seite 301

*IMPORT ELSET9.6*IMPORT ELSET: Import element set definitions from a previou s ABAQUS/Explicit o rABAQUS/Standard analysis.This option is used to impor

Seite 303

*RIGID SURFACE17.19*RIGID SURFACE: Define an analytical rigid surface.This option must be used when defining the seabed for three-dimensional drag chain

Seite 304

*RIGID SURFACESet TYPE=CYLINDER to define a three-dimensional rigid surface by providing connectedline segments and then sweeping them along a specified

Seite 305

*RIGID SURFACEThird line:1. The “word” START.2. Local x-coordinate of the starting point of the lin e segments.3. Local y-coordinate of the starting p

Seite 306

*RIGID SURFACEData line to define a parabolic arc segment:1. The “word” PARAB.2. x-coordinate of the middle point along the parabolic arc.3. y-coordina

Seite 307

*RIGID SURFACElocal rline segmentcircular arc segmentnablocal zStartnFigure 17.19–2*RIGID SURFACE, TYPE=REVOLUTION.17.19–5ABAQUS Version 6.1 Module:ID

Seite 309

*ROTARY INERTIA17.20*ROTARY INERTIA: Define rigid body rotary iner tia.This option is used to define rigid body rotary inertia values associated with RO

Seite 310 - PRE-TENSION SECTION

*ROTARY INERTIAIn large-displacem ent analysis (an ABAQU S/Explicit analysis or when the NLGEOMparameter is included on the*STEP option in an ABAQUS/S

Seite 311

S18. SABAQUS Version 6.1 Module:ID:Printed on:

Seite 314

*SECTION CONTROLS18.1*SECTION CONTROLS: Specify section controls.WARNING: Using values larger th an the default values for hourglass control canproduc

Seite 315

*SECTION CONTROLSRequired parameter:NAMESet this parameter equal to a label that will be used to refer to the section control definition. Allsection co

Seite 316

*SECTION CONTROLSABAQUS/Standard and ABAQUS/Explicit. Any data given on the data line will be ignored forthis case.Set HOUR GLASS=RELAX STIFFNESS (def

Seite 317

*SECTION CONTROLSNO. For elements other than cohesive elements, connector elements, and elem ents with plane stressformulations the default value is 1

Seite 318

*SECTION CONTROLS3. Scaling factor, , for the hourglass stiffness for use with the out-of-plane displacem ent degreeof freedom in small-strain shell e

Seite 320

*SECTION FILE18.2*SECTION FILE: Define results file requests of accumulated quantities onuser-defined surface sections.This option is used to control out

Seite 321

*SECTION FILEaverage rigid body m otion of the surface section. This parameter is relevant only if AXES=LOCALand the NLGEOM parameter is active in the

Seite 322

*SECTION FILE2a3b1defined section2a1anchor pointanchor pointYYXXelements used todefine the section2-D and axisymmetric3-Ddefined sectionZFigure 18.2–1

Seite 323

*IMPORT NSET9.7*IMPORT NSET: Import node set definitions from a previous ABAQUS/Explicit orABAQUS/Standard analysis.This option is used to im port node

Seite 325

*SECTION ORIGIN18.3*SECTION ORIGIN: Define a meshed cross-section origin.This option is used in conjunction with the*BEAM SECTION GENERATE option to de

Seite 327

*SECTION POINTS18.4*SECTION POINTS: Locate points in the beam section for which stress and strainoutput are required.This option is used as model data

Seite 328

*SECTION POINTS4. Local -position of second section point.Continue giving coordinate pairs for as many points as needed. At most four pairs of points

Seite 329

*SECTION PRINT18.5*SECTION PRINT: Define print requests of accumulated quantities on user-definedsurface sections.This option is used to provide tabular

Seite 330

*SECTION PRINTaverage rigid body m otion of the surface section. This parameter is relevant only if AXES=LOCALand the NLGEOM parameter is active in th

Seite 331

*SECTION PRINT2a3b1defined section2a1anchor pointanchor pointYYXXelements used todefine the section2-D and axisymmetric3-Ddefined sectionZFigure 18.5–

Seite 333

*SELECT CYCLIC SYMMETRY MODES18.6*SELECT CYCLIC SYMMETRY MODES: Specify the cyclic symmetry modes in aneigenvalue analysis of a cyclic symmetric struc

Seite 334 - 1. Fifth field variable

Trademarks and Legal N oticesCAUTIONARY NOTICE TO USERS:This manual is intended for qualified users who will e xercise sound engineering judgment and e

Seite 337

*SELECT EIGENMODES18.7*SELECT EIGENMODES: Select the modes to be used in a modal dynamic analysis.This option selects the modes to be used in a dynami

Seite 338

*SELECT EIGENMODESData lines if the GENERATE parameter is omitted and DEFINITION=MODE NUMBERS:First line:1. List of modes to be used.Repeat this data

Seite 339

*SFILM18.8*SFILM: Define film coefficients and associated sink temperatures over a surface forheat transfer analysis.This option is used to provide film c

Seite 340

*SFILMThe FILM AMPLITUDE parameter is ignored if a nonuniform film coefficient is defined inuser subroutine FILM or if a film coefficient is defined to be a

Seite 341 - Orientation angle

*SFLOW18.9*SFLOW: Define seepage coefficients and associated sink pore pressures normal toa surface.This option is used to pr ovide seepage coefficients

Seite 342

*SFLOWData lines to define drainage-only seepage:First line:1. Surface nam e.2. Seepage flow type label QD.3. Drainage-only seepage coefficient value,.(U

Seite 343

*SHEAR CENTER18.10*SHEAR CENTER: Define the position of the shear center of a beam section.This option can be used only in conjunction with the*BEAM GE

Seite 345

*SHEAR FAILURE18.11*SHEAR FAILURE: Specify a shear failure model and criterion.This option is used with the Mises or the Johnson-Cook plasticity model

Seite 346

*INCIDENT WAVE9.8*INCIDENT WAVE: Define incident wave loading for a blast or scattering load on aboundary.The preferred interface for applying incident

Seite 347

*SHEAR FAILUREData lines to define the failure strain in t abular form (TYPE=TABULAR):First line:1. Equivalent plastic strain at failure, .2. Rate of e

Seite 348 - First line:

*SHEAR RETENTION18.12*SHEAR RETENTION: Define the reduction of the shear modulus associated withcrack surfaces in a*CONCRETE model as a function of the

Seite 349

*SHEAR RETENTION7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than th

Seite 350

*SHEAR TEST DATA18.13*SHEAR TEST DATA: Used to provide shear test data.This option can be used only in conjunction with the*VISCOELASTIC option. The*S

Seite 352

*SHELL GENERAL SECTION18.14*SHELL GENERAL SECTION: D efine a general, arbitrary, elastic shell section.This option is used to define a general, arbitrar

Seite 353 - REFLECTION

*SHELL GENERAL SECTIONcontrols,” Section 21.1.4 of the ABAQUS Analysis User’s Manual) or to be used in a subsequentABAQUS/Explicit import analysis.OFF

Seite 354

*SHELL GENERAL SECTIONThe following parameters are optional, mutually exclusive, and used only if the section is notdefined by its g eneral stiffness o

Seite 355

*SHELL GENERAL SECTIONOptional parameter for use when the MATERIAL, the COMPOSITE, and the USER parametersare omitted:DEPENDENCIESSet this parameter e

Seite 356

*SHELL GENERAL SECTION3. , temperature for these values of Y and .4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subseque

Seite 357

*INCIDENT WAVEPRESSURE AMPLITUDESet this parameter equal to the name of the amplitude curve defining the fluid pressure timehistory at the standoff poin

Seite 359

*SHELL SECTION18.15*SHELL SECTION: Specify a shell cross-section.This option is used to specify a shell cross-section.Products: ABAQUS/Standard ABAQUS

Seite 360

*SHELL SECTIONDENSITYSet this parameter equal to a mass per unit surface area of the shell.If this parameter is used, the mass of the s h ell includes

Seite 361

*SHELL SECTIONIn ABAQUS/Standard the default is POISSON=0.5; in ABAQUS/Explicit the default isPOISSON=MATERIAL.STAC K DIRECTIONThis parameter is relev

Seite 362

*SHELL SECTIONbe at least 3, except in a pure heat transfer analysis, where the number of integration pointscan be 1 for a constant temperature throug

Seite 363

*SHELL TO SOLID COUPLING18.16*SHELL TO SOLID COUPLING: Define a surface-based coupling between a shelledge and a solid face.This surface-based option a

Seite 364

*SHELL TO SOLID COUPLING2. The solid surface name.Repeat this data line as often as n ecessary to define all the surfaces forming the coupling definitio

Seite 365

*SIMPEDANCE18.17*SIMPEDANCE: D efine impedances of acoustic surfaces.This option is used to provide surface impedance information or nonreflecting bound

Seite 366

*SIMPEDANCEOptional parameter:OPSet OP=MOD (default) to modify existing impe dances or to define addi tional impedances.Set OP=NEW if all existing im p

Seite 367 - for rigid

*SIMPLE SHEAR TEST DATA18.18*SIMPLE SHEAR TEST DATA: Used to provide simple shear test data.This option is used to provide simple shear test data. It

Seite 368 - affects only the handling of

*INCIDENT WAVE FLUID PROPERTY9.9*INCIDENT WAVE FLUID PROPERTY: Define the fluid properties associated with anincident wave.The preferred interface for d

Seite 370

*SLIDE LINE18.19*SLIDE LINE: Specify slide line surfaces on which deformable structures mayintera ct.This option is relevant only for slide line and t

Seite 371

*SLIDE LINESMOOTHSet this parameter equal to the smoothing fraction, f, to round discontinuities between line segm entsof a slide line. The default is

Seite 372

*SLOAD18.20*SLOAD: A pply loads to a substructure.This option is used to activate a substructure load case defined by the*SUBSTRUCTURE LOAD CASEoption.

Seite 374

*SOILS18.21*SOILS: Effective stress analysis for fluid-filled porous media.This option is used to specify transient (consolidation) or steady-state resp

Seite 375 - RIGID SURFACE

*SOILSFACTORSet this parameter equal to the damping factor to be used in the automatic damping algorithm(see “Solving nonlinear problems,” Section 7.1

Seite 376

*SOILS5. The rate of change of pore pressure with time, used to define steady state: only needed ifEND=SS is chosen. When all n odal wetting liquid pre

Seite 378 - First (and only) line:

*SOLID SECTION18.22*SOLID SECTION: Specify element properties for solid, infinite, acoustic, and trusselements.This option is us ed to define pro pertie

Seite 380

*SOLID SECTIONRequired parameter for anisotropic materials optional parameter for isotropic materials:ORIENTATIONSet this param eter equal to the nam

Seite 381

*SOLID SECTIONData line to define homogeneous solid elements, infinite elements, acoustic elements, or trusselements:First (and only) line:1. Enter any

Seite 383

*SOLUBILITY18.23*SOLUBILITY: Specify solubility.This option is used to define the solubility for a material diffusing through a base material. It must

Seite 385

*SOLUTION TECHNIQUE18.24*SOLUTION TECHNIQUE: Specify alternative solution methods.This option is used to specify the quasi-Newton m ethod instead of t

Seite 386

*SOLUTION TECHNIQUEData line for TYPE=CONTACT ITERATIONS:First (and only) line:1. Correction factor on the maximum number of right-hand-side solutions

Seite 387

*SOLVER CONTROLS18.25*SOLVER CONTROLS: Specify controls for the iterative linear solver.This option is used to set th e control parameters for the ite

Seite 389

*SORPTION18.26*SORPTION: Define absorption and exsorption behavior.This option is used to define absorption and exsorption behaviors of a partially satu

Seite 390

*INCIDENT WAVE INTERACTION9.10*INCIDENT WAVE INTERACTION: D efine incident wave loading for a blast orscattering load on a surface.This option is used

Seite 391

*SORPTION3. . This value must lie in the range . The default is 0.01.4.. This value must lie in the range . The default is 0.01 plus a verysmall posit

Seite 392

*SPECIFIC HEAT18.27*SPECIFIC HEAT: Define specific heat.This option is used to specify a material’s specific heat.Products: ABAQUS/Standard ABAQUS/Explic

Seite 394

*SPECTRUM18.28*SPECTRUM: Define a response spectrum.This option is used to define a spectrum to be used in a*RESPONSE SPECTRUM analysis.Product: ABAQUS/

Seite 395

*SPECTRUMDate lines to define a spectrum:First line:1. Magnitude of the spectrum.2. Frequency, in cycles per time, at which this magnitude is used.3. A

Seite 396

*SPRING18.29*SPRING: Define spring behavior.This option is used to define the spring behavior for spring elements.In ABAQ US/Standard analyses it is als

Seite 397

*SPRINGsystem. Set this parameter equal to the nam e of the*ORIENTATION definition (“Orientations,”Section 2.2.5 of the ABAQUS Analysis User’s Manual).

Seite 398

*SPRING5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than five):

Seite 399

*SPRING2. For SPRING2 elements give the degree of freedom with which the springs are associated attheir second nodes.If the ORIENTATION parameter is i

Seite 400

*SRADIATE18.30*SRADIATE: Specify surface radiation conditions in heat transfer analysis.This option is used to apply surface radiation boundary condit

Seite 401

*INCIDENT WAVE INTERACTIONPRESSURE AMPLITUDESet this parameter equal to the name of the amplitude curve defining the fluid pressure timehistory at the s

Seite 402

*SRADIATE4. Emissivity, .Repeat this data line as often as necessary to define radiation conditions for different surfaces.18.30–2ABAQUS Version 6.1 Mo

Seite 403

*STATIC18.31*STATIC: Static stress/displacement analysis.This option is used to indicate that the step should be analyzed as a static load step.Produc

Seite 404

*STATICby ABAQUS is not suitable. This parameter must be used in conjunction with the STABILIZEparameter and overrides the autom atic calculation of t

Seite 405

*STATIC3. Minim um time increment allowed. O nly used for automatic time increm entation. IfABAQUS/Standard finds it needs a smaller time incre ment th

Seite 407

*STEADY STATE CRITERIA18.32*STEADY STATE CRITERIA: Specify steady-state criteria for terminating aquasi-static uni-directional simulation.This option

Seite 408

*STEADY STATE C RITERIA7. First direction cosine of force or torque norm output at the reference node.8. Second direction cosine of force or torque no

Seite 409

*STEADY STATE DETECTION18.33*STEADY STATE DETECTION: Specify steady-state requirements for terminating aquasi-static uni-directional simulation.This o

Seite 410

*STEADY STATE DETECTION3. Third direction cosine of primary direction.4. Global X- coordinate of a point on the cutting pla ne.5. Global Y-coordinate

Seite 411

*STEADY STATE DYNAMICS18.34*STEADY STATE DYNAMICS: Steady-state dynamic response based on harmonicexcitation.This option is used to calculate the syst

Seite 412

*INCIDENT WAVE INTERACTION PROPERTY9.11*INCIDENT WAVE INTERACTION PROPERTY: Define the geome tric data and fluidproperties describing an incident wave.T

Seite 413

*STEADY STAT E DYNAMICSSet SUBSPACE PROJECTION=EIGENFREQUEN CY if the projections onto the modalsubspace of the dynamic equations are to be performed

Seite 414

*STEADY STATE DYNAMICSData lines for a steady-state dynamics analysis:First line:1. Lower limit of frequency range or a single frequency, in cycles/ti

Seite 416 - SHELL GENERAL SECTION

*STEADY STATE TRANSPORT18.35*STEADY STATE TRA NSPORT: Steady-state transport analysis.This option is used to indicate that the step should be analyzed

Seite 417

*STEADY STATE TRANSPORTparameter and overrides the autom atic calculation of the dam ping factor based on a value of thedissipated energy fraction.INE

Seite 418

*STEADY STATE TRANSPORTterminated. If this entry is zero, a default value of the smaller of the suggested initial timeincrement or 10−5times the total

Seite 420

*STEP18.36*STEP: Begin a step.This option is used to begin each step definition. It must be followed by a procedure definition option.Products: ABAQUS/S

Seite 421

*STEPCONVERT SDIThis parameter determines how severe discontinuities (such as contact changes) are accounted forduring nonlinear analysis.Set CONVERT

Seite 422 - SHELL SECTION

*STEPNAMESet this parameter equal to a label that will be used to refer to the step on the output database. Stepnames in the same input file must be un

Seite 424

*STEPBeginning a step in an ABAQUS/Explicit analysisReferences:•“Procedures: overview,” Section 6.1.1 of the ABAQUS Analysis User’s Manual• *END STEPO

Seite 425

*SUBMODEL18.37*SUBMODEL: Specify driven boundary nodes in submodeling analysis.This option is used to specify the total list of “driven nodes” for a s

Seite 426 - 2. The solid surface name

*SUBMODELEXTERIOR TOLERANCESet this parameter equal to the fraction of the average elem ent size in the global m odel by which adriven node of the sub

Seite 427

*SUBSTRUCTURE COPY18.38*SUBSTRUCTURE COPY: Copy a substructure definition.This option is used to copy a substructu re definition from one library to ano

Seite 429

*SUBSTRUCTURE DELETE18.39*SUBSTRUCTURE DELETE: Remove a substructure from the substructure library.This option is used to delete a substructure from a

Seite 431

*SUBSTRUCTURE D IRECTORY18.40*SUBSTRUCTURE DIRECTORY: List information about the substructures on asubstructure library.This option is used to provide

Seite 433

*SUBSTRUCTURE GENERATE18.41*SUBSTRUCTURE GENERATE: Substructure generation analysis.This option is used to indicate that the step should be analyzed a

Seite 434

*INCIDENT WAVE PROPERTY9.12*INCIDENT WAVE PROPERTY: Define the geometric data describing an incidentwave .The preferred interface for defining the geome

Seite 435

*SUBSTRUCTURE GENERATEPROPERTY EVALUATIONSet this parameter equal to the frequency at which to evaluate frequency-dependent propertiesfor viscoelastic

Seite 436

*SUBSTRUCTURE LOAD CASE18.42*SUBSTRUCTURE LOAD CA SE: Begin the definition of a substructure load case.This option is used to begin the definition of a

Seite 438

*SUBSTRUCTURE MATRIX OUTPUT18.43*SUBSTRUCTURE MATRIX OUTPUT: Write a substructure’s recovery matrix,reduced stiffness matrix, mass matrix, load case v

Seite 439

*SUBSTRUCTURE MATRIX OUTPUTSet OUTPUT FILE=USER DEFINED to write the results to a user-specified file in theformat of the*USER ELEMENT, LINEAR option (“

Seite 440 - SOLID SECTION

*SUBSTRUCTURE PAT H18.44*SUBSTRUCTURE PATH: Enter into a substructure to obtain output or return backfrom a previously entered substructure.This optio

Seite 442

*SUBSTRUCTURE PROPERTY18.45*SUBSTRUCTURE PROPERTY: Translate, rotate, and/or reflect substructures.This option is used to define propertie s for a subst

Seite 443

*SUBSTRUCTURE PROPERTY3. Value of the translation to be applied in the global Z-direction.Enter values of zero to apply a pure r otation.Second line:1

Seite 444

*SUBSTRUCTURE PROPERTYData lines to translate, rotate, and reflect a substructure:First line:1. Value of the translation to be applied in the global X-

Seite 445

ABAQUS Offices and RepresentativesABAQUS, Inc. Rising Sun Mills, 166 Valley Street, Providence, RI 02909–2499, Tel: +1 401 276 4400,Fax: +1 401 276 440

Seite 446 - SOLUTION TECHNIQUE

*INCIDENT WAVE PROPERTY4. X-component of , the velocity of the incident wave standoff point.5. Y-com ponent of, the velocity of the incident wave stan

Seite 447

*SUBSTRUCTURE PROPERTYθabθFigure 18.45–1 Substructure rotation.bcaFigure 18.45–2 Substructure reflection. Points a, b,andc cannot be colinear.18.45–4AB

Seite 448

*SURFACE18.46*SURFACE: Define a surface or region in a model.This option is used to define surfaces for contact simulations, tie constraints, fasteners,

Seite 449

*SURFACESet COMBINE=INTERSECTION to create a surface based on the intersection of two surfacesof the same type.Set COMBINE=DIFFERENCE to create a surf

Seite 450 - Data line for TYPE=SCANNING:

*SURFACEfinite-sliding contact formulation in ABAQUS/Standard or the surface is used with the contact pairalgorithm in ABAQUS/Explicit. TRIM=YES has no

Seite 451

*SURFACEData lines for C OMBINE=UNION:First line:1. List of surfaces.Repeat this data line as often as necessary. Up to 16 entr ies are allowed per li

Seite 452

*SURFACE2. Face or edge identifier label (see “Defining element-based surfaces,” Section 2.3.2 of theABAQUS Analysis U ser’s Manual, for the face and ed

Seite 453

*SURFACE3. Global Y-coordin ate or z-coordinate of the starting point of the line segments.Second and subsequent data lines define the various line, ci

Seite 454

*SURFACE3. Local z-coordinate of the starting point of the line segment s.Third and subsequent data lines define the various line, circular, and parabo

Seite 455

*SURFACEStartLine segmentLocal y-axiscLocal x-axisb annOutward normalCircular arc segmentLocal z-axisGeneratordirectionFigure 18.46–1*SURFACE, TYPE=CY

Seite 456

*SURFACElocal rline segmentcircular arc segmentnablocal zStartnFigure 18.46–2*SURFACE, TYPE=REVOLUTION.18.46–9ABAQUS Version 6.1 Module:ID:Printed on:

Seite 457

*INCIDENT WAVE REFLECTION9.13*INCIDENT WAVE REFLECTION: Define the reflection load on a surface caused byincident wave fields.This option is used to defin

Seite 459

*SURFACE BEHAVIOR18.47*SURFACE BEHAVIOR: Define alternative pressure-overclosure relationships forcontact.This option is used to modify the default har

Seite 460 - 4. Emissivity,

*SURFACE BEHAVIORABAQUS Analysis User’s Manual, for a discussion of the default penalty stiffness. You can specifyor modify the penalty stiffness on t

Seite 461

*SURFACE BEHAVIORData line for PRESSURE-OVERCLOSURE=EXPONENTIAL:First (and only) line:1. Clearance at which the contact pressure is zero, (see Figure

Seite 462

*SURFACE BEHAVIORRepeat this data line in ascend ing order of overclosure value as often as necessary to definethe overclosure as a function of pressur

Seite 463

*SURFACE BEHAVIOR(pn,hn)(p3,h3)(p2,h2)(0,h1)Overclosure hPressure pClearance cFigure 18.47–3 Pressure-overclosure relationship defined in tabular form.

Seite 465

*SURFACE FLAW18.48*SURFACE FLAW: Define geometry of surface flaws.This option is used with line spring elements to define the geometry of the part-throug

Seite 467

*SURF ACE INTERACTION18.49*SURFACE INTERACTION: Define surface interaction properties.This option is used to create a surface interaction property defin

Seite 469

*SURFACE INTERACTIONSet this parameter equal to the thickness of an interfacial layer between the contacting surfaces.The value can be positive or neg

Seite 470 - STEADY STAT E DYNAMICS

*SURF ACE INTERACTIONSecond line (needed only if the PROPERTIES parameter is used):1. Enter the values of the surface interaction p roperties, eight p

Seite 472

*SURF ACE PROPERTY18.50*SURFACE PROPERTY: Define surface properties for cavity radiation.This option is used to define surface properties for cavity rad

Seite 474 - STEADY STATE TRANSPORT

*SURFACE PROPERTY ASSIGNMENT18.51*SURFACE PROPERTY ASSIGNMENT: Assign surface properties to a surface for thegeneral contact algorithm.This option is

Seite 475

*SURFACE PROPERTY ASSIGNMENTData lines for PROPERTY=OFFSET FRACTION:First line:1. Surface name. If the surface name is omitted, a default surface that

Seite 476

*SURFACE SECTION18.52*SURFACE SECTION: Specify section properties for surface elements.This option is used to specify a surface elem ent cross-section

Seite 478

*SWELLING18.53*SWELLING: Specify time-dependent volumetric swelling.This option is used to specify time-dependent metal swelling for a material. Swell

Seite 479

*INCLUDE9.14*INCLUDE: Reference an external file containing ABAQUS input data.This option is used to reference an external file containing a portion of

Seite 480

*SWELLING2. Etc., up to eight field variables per line.Repeat this set of data lines as often as neces sary to define the dependence of volumetr ic swel

Seite 481

*SYMMETRIC MODEL GENERATION18.54*SYMMETRIC MODEL GENERATION: Create a three-dimensional model from anaxisymmetric or partial three-dimensional model.T

Seite 482

*SYMMETRIC MODEL GENERATIONOptional parameters:ELEMENT OFFSETSet this parameter equal to an integer to define the offset for element numbering. When th

Seite 483

*SYMMETRIC MODEL GENERATIONSecond line:1. Segment angle, (in degrees), of the original three-dim ensional sector. .2. Number of three-dimensional repe

Seite 484

*SYMMETRIC MODEL GENERATION2. Angular scaling factor in the circumferential direction with respect to the original sector. Thedefault is 1.0.Repeat th

Seite 485

*SYMMETRIC MODEL GENERATIONSecond line:1. X-coordinate of point c.2. Y-coordinate of point c.3. Z-coordinate of point c.Data lines if the REVOLVE para

Seite 486

*SYMMETRIC MODEL GENERATIONbaθyxzFigure 18.54–1 Revolving a single three-dimensional repetitivesector to create a periodic structure.bzcrazZYXθreferen

Seite 487

*SYMMETRIC MODEL GENERATION875463123 + n7 + n6 + n5 + n4 + n1 + n2 + n8 + nabreflection lineFigure 18.54–3 Reflecting a three-dimensional model through

Seite 488

*SYMMETRIC MODEL GENERATION587463122 + n6 + n7 + n8 + n1 + n4 + n5 + nabcreflection plane3 + nFigure 18.54–4 Reflecting a three-dimensional model throu

Seite 489

*SYMMETRIC RESULTS TRANSFER18.55*SYMMETRIC RESULTS TR ANSFER: Import results from an axisymmetric or partialthree-dimensional analysis.This option is

Seite 491

*SYMMETRIC RESULTS TRANSFERSet UNBALANCED STRESS=RAMP if the stress unbalance is to be resolved linearly overthe step.There are no data lines associat

Seite 492

*SYSTEM18.56*SYSTEM: Specify a local coordinate system in which to define nodes.This option is used to define nodes by accepting coordinates relative to

Seite 493

*SYSTEMZYXXYZ111(local)(global)abcFigure 18.56–1 Local coordinate system.18.56–2ABAQUS Version 6.1 Module:ID:Printed on:

Seite 494 - SUBSTRUCTURE MATRIX OUTPUT

T19. TABAQUS Version 6.1 Module:ID:Printed on:

Seite 496

*TEMPERATURE19.1*TEMPERATURE: Specify temperature as a predefined field.This option is used to specify tem perature as a predefined field during an analys

Seite 497

*TEMPERATUREapply. Rather, the AMPLITUDE parameter given on the*STEP option governs the behaviorin an ABAQUS/Standard analysis, and the temperatures a

Seite 498

*TEMPERATUREESTEPSet this parameter equal to the step num ber (of the analysis whose results or output database fileis being used as input to this opti

Seite 499

*TEMPERATURE2. Reference temperature value. If the AMPLITUDE parameter is present, this value andsubsequent temperature values will be modified by the

Seite 500

*TEMPERATUREData lines to define temperatures using user subroutine UTEMP:First line:1. Node set or node number.Repeat this data line as often as neces

Seite 501

*INCREMENTATION OUTPUT9.15*INCREMENTATION OUTPUT: Define output database requests for timeincrementation data.This option is used to write incrementati

Seite 503 - of any shell

*TENSILE FAILURE19.2*TENSILE FAILURE: Specify a tensile failure model and criterion .This option is used with t he Mises or the Johnson-Cook plasticit

Seite 504

*TENSILE FAILURESet PRESSURE=DUCTILE to model the cas e where the pressure stress will be limited by thehydrostatic cutoff stress when the failure cri

Seite 505

*TENSION STIFFENING19.3*TENSION STIFFENING: Define the retained tensile stress normal to a crack in a*CONCRETE model.This option is used to define the r

Seite 506

*TENSION STIFFENING4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.The first point at each value of temperature must be a s

Seite 507

*THERMAL EXPANSION19.4*THERMAL EXPANSION: Define the thermal expansion behavior of beams.This option c an be used onl y in conjunction with the*BEAM G

Seite 509

*TIE19.5*TIE: Define surface-based tie and cyclic symmetry constraints or coupled acoustic-structural interactions.This option is used to impose tie co

Seite 510

*TIEOptional parameters:ADJUSTSet ADJUST=YES (default) to move all tied nodes on the slave surface onto the m aster surface inthe initial configuration

Seite 511

*TIME POINTS19.6*TIME POINTS: Specify time points at w hich data are written to the output databaseor restar t files, or specify time points in the loa

Seite 513

*TIME POINTSData lines if the GENERATE parameter is om itted:First line:1. List of time po ints; the points must be arrange d in ascending order.Repea

Seite 514 - Overclosure

*TORQUE19.7*TORQUE: Define the torsional behavior of beams.This option c an be used onl y in conjunction with the*BEAM G ENERAL SECTION,SECTION=NONLINE

Seite 515

*TORQUESubsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field v

Seite 516

*TORQUE PRINT19.8*TORQUE PRINT: Print a summary of the total torque that can be transmitted acrossaxisymmetric slide lines.This option is used to obta

Seite 518

*TRACER PARTICLE19.9*TRACER PARTICLE: Define tracer particles for tracking the location of and resultsat material points during a step.This option is u

Seite 520

*TRANSFORM19.10*TRANSFORM: Specify a local coordinate system at nodes.This option is used to specify a local coordinate system for displacement and ro

Seite 521

*TRANSFORMXYZY1Z1(global)baX1Figure 19.10–1 Cartesian transformation option.XYZXYZ1(global)ba11(radial)(axial)(tangential)Figure 19.10–2 Cylindrical t

Seite 522

*TRANSFORMXYZ(global)abZ1 (meridional)Y1 (circumferential)X1 (radial)Figure 19.10–3 Spherical transformation option.19.10–3ABAQUS Version 6.1 Module:I

Seite 523

*INELASTIC HEAT FRACTION9.16*INELASTIC H EAT FRACTION: Define the fraction of the rate of inelastic dissipationthat appears as a heat source.This optio

Seite 525

*TRANSPORT VELOCITY19.11*TRANSPORT VELOCITY: Specify angular transport velocity.This option is used to define the angular velocity of material transpor

Seite 526

*TRANSPORT VELOCITYGENERATION option. For a rigid body of type REVOLUTION the rotation is assum ed to beabout the axis of revolution of the body.Repea

Seite 527

*TRANSVERSE SHEAR STIFFNESS19.12*TRANSVERSE SHEAR STIFFNESS: Define transverse shear stiffness for beams andshells.This option must be used in conjunct

Seite 528

*TRANSVERSE SHEAR STIFFNESSData line when used with all other beam sections:First (and only) line:1. Value of the shear stiffness of the section.2. Va

Seite 529

*TRIAXIAL TEST DATA19.13*TRIAXIAL TEST DATA: Provide triaxial test data.This option is required if some or all of the m aterial parameters that define

Seite 531

*TRS19.14*TRS: Used to define temperature-time shift for time history viscoelastic analysis.This option can be used only in conjunction with the*VISCOE

Seite 533

U20. UABAQUS Version 6.1 Module:ID:Printed on:

Seite 536 - SYMMETRIC MODEL GENERATION

*UEL PROPERTY20.1*UEL PROPERTY: Define proper ty values to be used with a user element type.This option is used to define the properties of a user elem

Seite 538

*UNDEX CH ARGE PROPERTY20.2*UNDEX CHARGE PROPERTY: Define an UNDEX charge for incident w aves.This option defines parameters that create the tim e histo

Seite 539

*UNDEX CHARGE PROPERTY2. Maximum number of time steps for the bubble simulation, . The bubble amplitudesimulation ceases when the number of steps reac

Seite 540

*UNIAXIAL TEST DATA20.3*UNIAXIAL TEST DATA: Used to provide uniaxial test data (compression and/ortension).This option is used to provide uniaxial tes

Seite 541

*UNIAXIAL TEST DATAData lines to specify uniaxial test data for the Marlow model:First line:1. Nominal stress, .2. Nominal strain,.3. Nominal lateral

Seite 542

*UNIAXIAL TEST DATAUsing uniaxial test data to define the Mullins effect material modelReferences:•“Mullins effect in rubberlike materials,” Section 17

Seite 544

*USER DEFINED FIELD20.4*USER DEFINED FIELD: Redefine field variables at a material point.This material option is used to allow the values of field variab

Seite 545

*INERTIA RELIEF9.17*INERTIA RELIEF: Apply inertia-based load balancing.This option is used to apply inertia-based loads on a free or partially constra

Seite 547

*USER ELEMENT20.5*USER ELEMENT: Introduce a user-defined element type .This option is used to introduce a linear or a general user-defined elem ent. It

Seite 548

*USER ELEMENTRequired parameters if the FILE parameter is included:OLD ELEMENTSet this parameter equal to the elem ent number that was assigned to the

Seite 549 - 1. Node set or node number

*USER ELEMENTSecond line if the a ctive degrees of freedom are different at subsequent nodes:1. Enter the position in the connectivity list (node posi

Seite 550

*USER ELEMENTPROPERTIESSet this parameter equal to the number of real (floating point) property values needed as data in usersubroutine UEL to define su

Seite 551

*USER MATERIAL20.6*USER MATERIAL: Define material constants for use in subroutine UMAT, UMATHT,orVUMAT.This option is used to input material constants

Seite 552

*USER MATERIALInclude this parameter if the material stiffness matrix, , is not symmetric or whena thermal constitutive model is used andis not symmet

Seite 553

*USER OUTPUT VARIABLES20.7*USER OUTPUT VARIABLES: Specify number of user variables.This option is used to allow ABAQ US to allocate space at each mate

Seite 555

V21. VABAQUS Version 6.1 Module:ID:Printed on:

Seite 556

PrefaceThis section lists various resources that are available for help with using ABAQUS.SupportABAQUS, Inc., offers both technical engineering suppo

Seite 557

*INERTIA RELIEFThere are no data lines when the FIXED or REMOVE parameters are specified.9.17–2ABAQUS Version 6.1 Module:ID:Printed on:

Seite 559

*VARIABLE MASS SCALING21.1*VARIABLE MASS SCALING: Specify mass scaling during the step.This option is used to specify mass sc aling during the step fo

Seite 560

*VARIABLE MASS SCALINGRequired, mutually exclusive parameters if the D T parameter or the TYPE=ROLLING parameteris used:FREQUENCYSet this parameter eq

Seite 561

*VIEWFACTOR OUTPUT21.2*VIEWFACTOR OUTPUT: Write radiation viewfactors to the results file in cavityradiation heat transfer analysis.This option is used

Seite 563

*VISCO21.3*VISCO: Transient, static, stress/displacement analysis with time-dependentmaterial respons e (creep, swelling, and viscoelasticity).This op

Seite 564

*VISCOSTABILIZEInclude this parameter to use automatic stabilization if the problem is e xpected to be u nstable dueto local instabilities. Set this p

Seite 565

*VISCOELASTIC21.4*VISCOELASTIC: Specify dissipative behavior for use with e lasticity.This option is used to generalize a material’s elastic response

Seite 566

*VISCOELASTICTIMEUse this parameter to choose the time domain definition. In this case the material’s elasticity mustbe defined using the*ELASTIC, the*H

Seite 567

*VISCOELASTICOptional parameters when test data are given to define time domain viscoelasticity withTIME=CREEP TEST DATA or TIME=RELAXATION TEST DATA o

Seite 568

*INITIAL CONDITIONS9.18*INITIAL CONDITIONS: Specify initial conditions for the model.This option is used to prescribe initial conditions for an analys

Seite 569

*VISCOELASTIC3. Frequency, f, in cycles per time.4. Uniaxial nominal strain (defines the level of uniaxial preload).Repeat this data line as often as n

Seite 570

*VISCOELASTIC4. Closure (defines the level of preload).Repeat this data line as often as necessary to define the effective thickness-direction gasket lo

Seite 572

*VISCOUS21.5*VISCOUS: Specify viscous material properties for the two-layer viscoplastic model.This option is used to d efine the viscous properties fo

Seite 573

*VISCOUS7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1.

Seite 574 - TRANSVERSE SHEAR STIFFNESS

*VOID NUCLEATION21.6*VOID NUCLEATION: Define the nucleation of voids in a porous material.This option is used to model the nucleation of voids in a por

Seite 576

*VOLUMETRIC TEST DATA21.7*VOLUMETRIC TEST DATA: Provide volumetric test data.This option can be used only in conjunction with the*HYPERELASTIC option,

Seite 577

*VOLUMETRIC TEST DATASee “Using the DEPENDENCIES parameter to define field variable dependence” in “Material datadefinition,” Section 16.1.2 of the ABAQU

Seite 578

*VOLUMETRIC TEST DATAViscoelastic material modelReferences:•“Time domain viscoelasticity,” Section 17.7.1 of the ABAQUS Analysis User’s Manual• *VISCO

Seite 579

*INITIAL CONDITIONSSet TYPE=PORE PRESSURE to give initial pore fluid pressures for a coupled pore fluiddiffusion/stress analysis in ABAQUS/Standard.Set

Seite 581

W, X, Y , Z22. W,X,Y,ZABAQUS Version 6.1 Module:ID:Printed on:

Seite 583

*WAVE22.1*WAVE: Define gravity waves for use in immersed structure calculations.This option is used to define gravity waves for use in applying loads.Pr

Seite 584 - Fourth line:

*WAVEOptional parameters for TYPE=GRIDDED:MINIMUMSet this parameter equal to the elevation below which point the structure is fully immersed forall ti

Seite 585

*WAVE5. y-direction cosine defining the direction of the vector (the direction of travel for this wavecomponent). This component is not neede d in two-

Seite 587

*WIND22.2*WIND: Define wind velocity profile for wind loading.Thisoptionisusedtodefineawindvelocityprofileforuseinapplyingloads.Product: ABAQUS/AquaType:

Seite 588

About ABAQUS, Inc.Founded in 1978, ABAQUS, Inc. is the world's leading provider of advanced Finite Element Analysis software and services that ar

Seite 589

*INITIAL CONDITIONSSet TYPE=TEMPERATURE to give initial temperatures. The STEP and INC parameters canbe used in conjunction with the FILE parameter to

Seite 590

*INITIAL CONDITIONSINPUTSet this parameter equal to the name of the alternate input file containing the data lines for thisoption. See “Input syntax ru

Seite 591

*INITIAL CONDITIONSSECTION POINTSThis param eter is used only with TYPE=PLASTIC STRAIN, TY PE=STRESS, andTYPE=HARDENING to specify plastic strains, st

Seite 592

*INITIAL CONDITIONS7. X-coordinate of the second reference point.8. Y-coordinate of the second reference point.9. Z-coordinate of the second reference

Seite 593

*INITIAL CONDITIONSto read for a ny node is based on the maximum number of field varia ble values for all the nodes inthe model. These trailing initial

Seite 594

*INITIAL CONDITIONSData lines for TYPE=HARDENING, REBAR:First line:1. Element number or elem ent set label.2. Rebar name. If this field is left blank,

Seite 595

*INITIAL CONDITIONS2. Initial m ass flow rate per unit area in the x-direction or total initial mass flow rate in the cross-section for one-dimensional

Seite 596

CONTENTSContents — Volume IA*ACOUSTIC FLOW VELOCITY 1.1*ACOUSTIC MEDIUM 1.2*ACOUSTIC WAVE FORMULATION 1.3*ADAPTIVE MESH 1.4*ADAPTIVE MESH CONSTRAINT 1

Seite 597

*INITIAL CONDITIONS5. Value of third plastic strain component, .Give the initial plastic strain components as defi ned for this element type in Part VI

Seite 598

*INITIAL CONDITIONSNo data lines are required for TYPE=PRESSURE STRESS, FILE=file, STEP=step, INC=inc.Data lines for TYPE=RATIO if the USER parameter

Seite 599

*INITIAL CONDITIONSData lines for TYPE=RELATIVE DENSITY:First line:1. Node set or node number.2. Initial relative density.Repeat this d ata line as of

Seite 600

*INITIAL CONDITIONSSubsequent lines (only needed if more than seven solution-dependent state variables exist in the model):1. Value of eighth solution

Seite 601

*INITIAL CONDITIONS2. Initial specific energy.Repeat this data line as often as necessar y to define initial specific energy in various elements or eleme

Seite 602

*INITIAL CONDITIONS3. Vertical coordinate corresponding to the above value.4. Second value of vertical component of (effective) stress.5. Vertical coo

Seite 603

*INITIAL CONDITIONSNo data lines are required for TYPE=STRESS, USER.Data lines for TYPE=TEMPERATURE:First line:1. Node set or node number.2. First ini

Seite 604

*INITIAL CONDITIONSData lines for TYPE=VELOCITY:First line:1. Node set or node number.2. Degree of freedom.3. Value of initial velocity.Repeat this da

Seite 606

*INSTANCE9.19*INSTANCE: Begin an instance definition.This option is used to instance a part within an assembly. It must be used in conjunction with the

Seite 607

CONTENTSC*C ADDED MASS 3.1*CAPACITY 3.2*CAP CREEP 3.3*CAP HARDENING 3.4*CAP PLASTICITY 3.5*CAST IRON C OMPRESSION HARDENING 3.6*CAST IRON PLASTICITY 3

Seite 608 - VISCOELASTIC

*INSTANCEData line to translate an instance that is not imported from a previous analysis:First (and only) line:1. Value of the translation to be appl

Seite 609

*INSTANCEθabθFigure 9.19–1 Rotation of an instance.9.19–3ABAQUS Version 6.1 Module:ID:Printed on:

Seite 611

*INTEGRATED OUTPUT9.20*INTEGRATED OUTPUT: Specify variables integrated over a surface to be written tothe output database.This option is used to write

Seite 612

*INTEGRATED OUTPUTData lines to request integrated output:First line:1. Specify the identifying keys for the output variables to be written to the out

Seite 613

*INTEGRATED OUTPUT SECTION9.21*INTEGRATED OUTPUT SECTION: D efine an integrated output section over a surfacewith a local coordinate system and a refer

Seite 614

*INTEGRATED OUTPUT SECTIONSet POSITION=CENTER if the reference node is to be relocated from the user-defined locationto the center of the surface in th

Seite 615

*INTERACTION OUTPUT9.22*INTERACTION OUTPU T: Specify spot weld interaction variables to be writte n to theoutput database .This option is used to writ

Seite 617

*INTERACTION PRINT9.23*INTERACTION PRINT: Define print requests for spot weld interaction variables.This option is used to provide tabular pri nted out

Seite 618

CONTENTS*CONNECTOR LOAD 3.41*CONNECTOR LOCK 3.42*CONNECTOR MOTION 3.43*CONNECTOR PLASTICITY 3.44*CONNECTOR POTENTIAL 3.45*CONNECTOR SECTION 3.46*CONNE

Seite 619

*INTERACTION PRINTData lines to request spot weld interaction variable output to the data file:First line:1. Give the identifying keys for the variable

Seite 620

*INTERFACE9.24*INTERFACE: Define properties for contact elements.This option is used to assign elem ent section properties to ITT-, ISL-, IRS-, and ASI

Seite 621 - 22. W,X,Y,Z

*INTERFACEData line for ASI1 ele ments:First (and only) line:1. Area associated with the elements.Enter the direction cosine, in ter ms of the global

Seite 622

*ITS9.25*ITS: D efine properties for IT S elements.This option is used to define the properties for ITS-type elements. The*DASHPOT,*FRICTION, and*SPRING

Seite 623

*ITS2. Diameter of the hole in the support plate.3. X-direction cosine of the axis of the tube.4. Y-direction cosine of the axis of the tube.5. Z-dire

Seite 624

J10. JABAQUS Version 6.1 Module:ID:Printed on:

Seite 626

*JOINT10.1*JOINT: Define proper ties for JOINTC elements.This option is used to define the properties for JOINTC elements. T he*DASHPOT and*SPRING optio

Seite 628 - About SIMULIA

*JOINT EL ASTICITY10.2*JOINT ELASTICITY: Specify elas tic properties for elastic-plastic joint eleme nts.This option is used to define linear elastic m

Kommentare zu diesen Handbüchern

Keine Kommentare